AP Chemistry – Redox – 59

Name _____ Per ___

- 1. Indicate whether the following balanced equations involve oxidation-reduction. If they do, identify the elements that undergo changes in oxidation number.
- (a) $PBr_{3(1)} + 3H_2O_{(1)} \rightarrow H_3PO_{3(aq)} + 3HBr_{(aq)}$
- (b) $NaI_{(aq)} + 3HOCl_{(aq)} \rightarrow NaIO_{3(aq)} + 3HCl_{(aq)}$
- (c) $3SO_{2(g)} + 2HNO_{3(aq)} + 2H_2O_{(l)} \rightarrow 3H_2SO_{4(aq)} + 2NO_{(g)}$
- (d) $2H_2SO_{4(aq)} + 2NaBr_{(s)} \rightarrow Br_{2(l)} + SO_{2(g)} + Na_2SO_{4(aq)} + 2H_2O_{(l)}$
- 2. Hydrazine, N_2H_4 , and dinitrogen tetroxide form a self-igniting mixture that has been used as a rocket propellant. The reaction produces N_2 and H_2O . (a) Write a balanced chemical equation for this reaction.
- (b) Which substance serves as the reducing agent, and which as the oxidizing agent?
- 3. Complete and balance the following half-reactions. In each case indicate whether oxidation or reduction occurs.
- $(a)Mo_{(aq)}^{3+} \rightarrow Mo_{(s)}$
- (b) $H_2SO_{3(aq)} \rightarrow SO_4^{2-}_{(aq)}$ (acidic solution)
- (c) $NO_{3 \text{ (aq)}} \rightarrow NO_{(g)}$ (acidic solution)
- (d) $Mn^{2+}_{(aq)} \rightarrow MnO_{2(s)}$ (basic solution)
- (e) $Cr(OH)_{3(s)} \rightarrow CrO_4^{2-}(aq)$ (basic solution)
- 4. Complete and balance the following equations, and identify the oxidizing and reducing agents:
- (a) $NO_{2 (aq)} + Cr_2O_7^{2-}(aq) \rightarrow Cr^{3+}(aq) + NO_{3 (aq)}$ (acidic solution)

(b)
$$As_{(s)} + ClO_{3(aq)} \rightarrow H_3AsO_{3(aq)} + HClO_{(aq)}$$
 (acidic solution)

(c)
$$Cr_2O_7^{2-}$$
_(aq) + CH_3OH _(aq) \rightarrow HCO_2H _(aq) + Cr^{3+} _(aq) (acidic solution)

(d)
$$MnO_4^-$$
 (aq) + $Cl_{(aq)}^ \rightarrow$ Mn^{2+} (aq) + $Cl_{2(aq)}$ (acidic solution)

(e)
$$H_2O_{2(aq)} + ClO_{2(aq)} \rightarrow ClO_{2(aq)} + O_{2(g)}$$
 (basic solution)

(f)
$$H_2O_{2(aq)} + Cl_2O_{7(aq)} \rightarrow ClO_2^{-}_{(aq)} + O_{2(g)}$$
 (basic solution)

5. Using $K_{sp}=6 \times 10^{-51}$ for Ag_2S , $K_{a1}=9.5 \times 10^{-8}$ and $K_{a2}=1 \times 10^{-19}$ for H_2S , and $K_f=1.1 \times 10^5$ for $AgCl_2$, calculate the equilibrium constant for the reaction:

$$Ag_2S_{(s)} + 4Cl^{^{-}}_{(aq)} + 2H^{^{+}}_{(aq)} \leftrightarrow 2AgCl_2^{^{-}}_{(aq)} + H_2S_{(aq)}$$