AP Physics Part 1 Lab Handout 09 "Simple Machines: Pulleys"

Your Name: Lab Partner(s):

Purpose: To investigate how changing the number of pulleys affects the mechanical advantage of a pulley system.

Materials:

2 meters of string	ring stand & ring	meter stick
2 double pulleys	spring scale	200 gram mass

Procedure:

1. Find the resistance force (F_r) of the 200. g mass by attaching it directly to the spring scale. If the spring scale does not read 1.96 N then your scale needs adjustment.

- 2. Set up a Single Fixed Pulley. Pull straight down on the spring scale to lift the mass 0.100 m (d_r). Record the effort force (F_e) to the nearest 0.01 N by reading the scale while smoothly lifting the mass. Measure and record the distance a fixed point on the scale has moved to lift the mass (d_e) to the nearest 0.001 m.
- Repeat step 2 for a Single Movable Pulley, Single Fixed/Single Movable Pulley, Double Fixed/Single Movable Pulley and the Double Fixed/Double Movable Pulley.
- Determine the ideal mechanical advantage (IMA) by counting the number of upward supporting strands. The string section attached to the spring scale only counts when pulling upward.

Results:

Observations:

Data:

Pulley Arrangement	Fr	dr	Fe	d _e	IMA
Single Fixed	1.96 N	0.100 m			
Single Movable	1.96 N	0.100 m			
1 fixed/ 1 movable	1.96 N	0.100 m			
2 fixed/ 1 movable	1.96 N	0.100 m			
2 fixed/ 2 movable	1.96 N	0.100 m			

Data Analysis: (show complete work for one example of each calculation) 1. Calculate the actual mechanical advantage for each pulley using

- $AMA = F_r / F_e$.
- 2. Calculate the amount of work input for each pulley using $W_{\text{in}} = F_{\text{e}} \cdot d_{\text{e}}.$
- 3. Calculate the amount of work output for each pulley using $W_{out} = F_r \cdot d_r$.
- 4. Calculate the percent efficiency for each pulley using % efficiency = W_{out}/W_{in} · 100.

Pulley Arrangement	AMA	$W_{\texttt{in}}$	Wout	% efficiency
Single Fixed				
Single Movable				
1 fixed/ 1 movable				
2 fixed/ 1 movable				
2 fixed/ 2 movable				

Diagram:

Error Analysis:

Conclusion: