Problem Set – Significant Figures – 2

Name: Period _____ Part I: Give the number of significant figures in each number shown below. (1 point each) 1.) 8060. 2.) 0.0808 3.) 2060 4.) 910.00 6.) 550000 5.) 9.300 7.) 0.470 Part II: Round the following numbers to two significant digits and use proper scientific notation. (1 point each) 4.7001×10^9 8.) 21.208 13.) 9.) 0.64705 2.005 14.) 1.000×10^{-6} 10.) 0.08955 15.) 9.99935×10^{12} 11.) 47.821 16.) 9.035×10^5 1.250×10^8 12.) 17.) Perform the following operations, round your answer to the correct number of significant figures Part III: and use proper scientific notation. (1 point each) $(1.34 \times 10^{21} \cdot 9.4 \times 10^{22}) / 7.93 \times 10^{21} =$ 18.) $2.48 \times 10^{37} / 7.154 \times 10^{16} =$ 19.) 20.) $5.1 / (919 \cdot 3001) =$ $1.5000 \times 10^{38} / 0.00459 =$ 21.) 22.) 55880.0 - 41035.954 = $2.77 \times 10^{-13} / 9.172 \times 10^{-33} =$ 23.) 37005 • 620100 = 24.) 25.) 6591.6 - 718.5210 =

0.15325 / 0.00015 =

(0.495)(0.4060) =

26.)

27.)

Metric conversions: Convert the following SI units to the designated unit. (1 point each)		
28.)	14.8°C to Kelvin	_ K
29.)	34 cs to ms	_ ms
30.)	83 cm to meters	_ m
31.)	830 mL to liters	_ L
32.)	24.8991 K to Celsius	°C -
33.)	0.55 mg to grams	_ g
34.)	0.0020 kilograms to grams	_ g
35.)	cubic centimeters in a milliliter?	$_{\rm cm}^{\rm 3}$
36.)	cubic decimeters in 2.5 liters?	$_{\rm dm}^{\rm 3}$
37.) If the average value, that you determine experimentally, is 9.40 s and the accepted value is 9.80 s, what is your percent error? (Show your work, write your answer with the correct number of significant digits. 3 points)		
38.) If the mass of alcohol is 85.0 g and the density is 0.82 g/mL, what is the volume of alcohol? (Show your work and write units after every number. Write your answer with the correct number of significant digits. 3 points)		
39.) If the volume of a brick is 1050 mL and its density is 12.50 g / mL, what is the mass of the brick? (Show your work and write units after every number. Write your answer with the correct number of significant digits. 3 points)		

* The grade for this assignment can be reduced to the percentage that you earn on the original unit 1 test.