Quantum Numbers Worksheet Name_____Period____ **Directions**: Each large block arrow is pointing to a specific electron. Use your knowledge of quantum numbers to write the 4 quantum numbers for each electron. Use the spaces provided. Remember to include the sign for both m_ℓ and m_s . 1. O $$\frac{\uparrow\downarrow}{1s} \left| \frac{\uparrow\downarrow}{2s} \right| \frac{\uparrow}{2p} \frac{\uparrow}{2p}$$ $$m_{\ell} =$$ _____ $$m_s =$$ _____ 2. Ni $$\frac{\uparrow\downarrow}{1s}$$ $\frac{\uparrow\downarrow}{2s}$ $\frac{\uparrow\downarrow}{2p}$ $\frac{\uparrow\downarrow}{2p}$ $\frac{\uparrow\downarrow}{3s}$ $\frac{\uparrow\downarrow}{3p}$ $\frac{\uparrow\downarrow}{3p}$ $\frac{\uparrow\downarrow}{4s}$ $$m_{\boldsymbol{\ell}} = \ \underline{\hspace{1cm}}$$ $$m_s = \underline{\hspace{0.5cm}}$$ 3. Ca $$\frac{\uparrow\downarrow}{1s}$$ $\frac{\uparrow\downarrow}{2s}$ $\frac{\uparrow\downarrow}{2p}$ $\frac{\uparrow\downarrow}{2p}$ $\frac{\uparrow\downarrow}{3s}$ $\frac{\uparrow\downarrow}{3p}$ $\frac{\uparrow\downarrow}{3p}$ $\frac{\uparrow\downarrow}{4s}$ $$m_{\ell} =$$ _____ $$m_s = \underline{\hspace{1cm}}$$ 4. Ho $$\frac{\uparrow\downarrow}{1s} \left| \frac{\uparrow\downarrow}{2s} \right| \frac{\uparrow\downarrow}{2p} \left| \frac{\uparrow\downarrow}{2p} \right| \frac{\uparrow\downarrow}{3s} \left| \frac{\uparrow\downarrow}{3p} \right| \frac{\uparrow\downarrow}{3p} \left| \frac{\uparrow\downarrow}{3p} \right| \frac{\uparrow\downarrow}{4s} \left| \frac{\uparrow\downarrow}{3d} \right| \frac{\uparrow\downarrow}{4s} \left| \frac{\uparrow\downarrow}{4s} \right| \frac{\uparrow\downarrow}{4f} \left| \frac{\uparrow\downarrow}{4f} \right| \frac{\uparrow\downarrow}{4f} \left| \frac{\uparrow\downarrow}{4f} \right| \frac{\uparrow\downarrow}{4s} \left| \frac{\uparrow\downarrow}{4f} \right| \frac{\uparrow\downarrow}{4f} \frac{\uparrow\downarrow}{4f}$$ $$m_{\ell} =$$ _____ $$m_s = \underline{\hspace{1cm}}$$ | 5. For a principle quantum number, n, equal to 6, what is largest allowed value of ℓ ? | |---| | 6. For the quantum number, ℓ , equal to 8 is an m_{ℓ} value of -3 permitted(Y or N)? | | 7. What is the ℓ quantum number for an \mathbf{h} orbital? | | 8. For a principle quantum number, n, equal to 6, what is the total electron capacity of that level? | | 9. What is the correct representation for an orbital which has an n value of 9 and an ℓ value of 5? | | 10. Is the 3h orbital permitted(Y or N)? | | 11. For a principle quantum number, n, equal to 5, what is the total number of orbitals permitted? | | 12. For a principle quantum number, n, equal to 4, is it possible for ℓ to be equal to 6(Y or N)? | | 13. What is the spin quantum number for an electron represented as an up arrow? | | 14. Fill in the Aufbau Diagram for an atom of Silver. Use arrows to represent the electrons. | | 5p | | 15. Using the Aufbau Diagram above, how many dots should there be in the dot diagram for Silver? | | 16. What is the charge for a Silver ion? |